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Introduction Device Concept and Design Design for Manufacturing

Healthcare professionals face increasing pressure to navigate complex, Concept Our tool analyzes clinical Audio File (mp3, e Scalability: Cloud-based e

emotionally difficult conversations with patients, yet current training methods conversations—what was said and z-ow—to ) infrastructure usable for an | ¢

such as role-play or faculty feedback are subjective, costly, and unable to generate actionable feedback. entire hospital. (" Privacy Fitter (Anonymization)

scale to the demands of modern clinical education. More than S3% of U.S. Key Features :::’;::: feAudio ¢ Maintainability: Modular ™ Speterti 7 7 1

. . . . : peaker Diarization (Who spoke?) |

phys1c1ans r.eport burnout [1], with comr.nun.lcatlon—related stress cited as a o Audio Analysis: Extracts transcription + system allows for easy updqtes \

major contributor, and poor communication accounts for 30% of , , Pipeline 2: e Deployment & Cost: Mobile [ ASR (What was said?) ) J

malpractice cases [2]. Simultaneously, higher perceived clinician empathy emotion from convers%ltlon.s 2‘:‘::'::::“, i, app for easy access. Model \ L

significantly improves patient satisfaction and treatment adherence. ¢ Dual Feedback: Provides instant summary optimization will reduce [ L
(text/email) + detailed dashboard computational costs. (" Mutimoca e ]

Our mission is to create an Al-powered communication coach that Impact e Compliance: Privacy filters and _¢ _

delivers fast, objective, and personalized feedback to clinicians, e Trainees: Get immediate, actionable feedback. secure data handling on [ e }

empowering them to strengthen empathy, improve patient trust, and HIPA A-compliant servers.

e Administrators: Gain a scalable tool to track

reduce burnout. L. . ..
communication quality and training gaps.

e Patients: Benefit from improved provider
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U o o . : Feedback Latency <5 sec Immediate reflection
T e ey Status: Preliminary Architecture O UCt IC lte Cture
ase Project Documentation . . . . " : = o, -4 e . g
- R e Achievements: Plpehne 1 Diarization Accuracy DER = 6.6% Irustworthy segmentation
ase Planning Documentation

deation & Needs (Audio Analysis) 1s functional. ASR Accuracy WER = 15% Reliable transcript
Phase 3 pssessment Pipeline 2 (Feedback Load audio.mp3 Load conversation.json SER Accuracy ~00% T
Phase 4 Concept Ii:}[/izlrc:pment o .

Z Evaluation & Generatmn) classifies I‘OICS, Empathy Detection =95% precision Improve empathetic speech
ase once.pt valuation ' .
Ph 5 Selection Documentation behaVIOI‘S, and generates D‘ . t‘ : . . . .
. Technical Refinement larization HIPAA Compliance Full encryption + anonymization Privacy, trust

Documentation I’ep OI’tS . Se rV|C e.

Regulatory & C Ensemble Architecture 3-model fusion Deeper communication insight
Phase 7 gzi?;:c;tg;in . Challenge SOlved: Qualltatlve (pyannOte 3.1) speaker RO|€
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o el Compretersi 1n51ghts using Al modules and S Acoustic Feature Stability r = 0.95 correlation Accurate tone analysis
Future Work Work Done in BME 490 an LLM. -

Future Work

Conversational

Dynamics Analyzer

Design Inputs & Metrics ———

Generate Emotion Emotion Vocal
Transcript e o s dotactinn: Eaatiires (Python) 1. Refine & Validate: Retrain models with clinical data; validate feedback
Top Priority Needs Engineering Specifications (faster-whisper) Prosody Phonetics Analysis against SME evaluations.
= ERIBER) (avicvece] (Fi=t) . " 2. Expand Behavior Library: Enhance Behavior Classifier for skills like
Hiahest Objective feedback ' - Behavior Classifier . . .
Priority Multiple fine-tuned verbal & non-verbal | (DistilBERT) "Active LIStenlng-"
emotional detection models. . . . . . . .
Immediate feedback Splitting work between muttiple smaller 3. Develop Interactive Ul: Build Ul for audio recording, timeline exploration,
models reduces load and improves accuracy. .
and feedback review.
HIERA Compliance . Emotion Key morment 4. Assess "End-of-Meeting' Analysis: Optimize pipeline for near-immediate
i 1 Cloud-based computing with HIPPA detection: Aggregation and cohuereation jSOI"\ Analyzer report generation pOSt_meeting°
Acti insight : : . -~ : .
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f .. power, reducing latency.
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