Team 30

Hunter Belden, Pranav Nadimpalli, Elvis Palma, Ross Potter

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Sponsor: General Dynamics Mission Systems

Mentor: Glen Uehara

C++ V.S. Rust in Real-Time systems

Problem Statement

As embedded systems and real-time applications continue to grow in complexity and criticality, developers face increasing
pressure to ensure both high performance and system reliability. Traditional real-time programming languages such as C and
C++ offer low-level control and high execution speed but are prone to memory safety issues, concurrency errors, and
undefined behavior that can compromise system stability.

Rust, a relatively new systems programming language, promises memory safety, thread safety, and high performance without
relying on a garbage collector,features that directly address many of the challenges faced in real-time and embedded
development. Rust’s ownership model eliminates common bugs such as null pointer dereferencing, data races, and buffer
overflows at compile time. This ensures safer memory management and more predictable performance, both of which are
critical in electronics applications where timing precision and hardware control are essential. Additionally, Rust’s growing
ecosystem for embedded systems, including crates like embedded-hal and support for

cross-compilation, make it increasingly practical for programming microcontrollers, Raspberry Pi boards, and
other low-level hardware platforms.

Therefore, this project seeks to investigate whether Rust can serve as a viable alternative to C and C++ for
real-time system development. By implementing identical real-time applications in Rust, C, and C++ on a Raspberry}
platform and measuring execution time, memory usage, and latency, the study aims to provide data-driven “
insight into Rust’s performance, reliability, and potential advantages or trade-offs in real-time computing and
electronic system design.

Research / Approach

Data

Ovur research for this project focused on identifying and validating the specific
advantages Rust Provides over C++. While both languages are widely used in
systems programming. Rust’s claims improved memory safety, concurrency
guarantees, and development efficiency required deeper understanding.
Rather than relying solely on anecdotal theoretical benefits, our team sought
to understand these advantages in practical measurable terms that as our
audience could easily interpret. To accomplish this we began studying the
core language features that differentiate began studying the core language
features that differentiate Rust from C++, including ownership and borrowing
mechanisms, compiler-enforced safety rules, and modern tooling.
Once we established these theoretical benefits, using AWS
EC2 servers, we we designhed experiments to quantify their
real-world impact.

ldentical Benchmarks: Implemented parallel C++ and
Rust applications performing the same real-time |I/O
tasks on NXP LS1046A-RDB and Raspberry Pi 3B+.
Metrics Measured:

-Execution latency (ns — ms)

-Jitter under multitasking

-Memory safety / fault resilience (via fuzzing)

-CPU & memory utilization

Data Capture:
Python heartbeat visualizer and log parser collect real-
time timing data from both systems.

Analysis:
Python and Excel used for averaging, standard
deviation, and graphical output of crash statistics.

Average Execution Latency Comparison

C++
I Rust

= -
= L
T T

=
w

Execution Latency (ms)

=
(=

Comparison of End-to-End Pump Latency Metrics (Rust vs C4++) C

80a —_— ~omparison of Pressure Sensor Sampling Rate (Rust vs C++4)
Fust 4

150 102.5

a5
150 Maan TH (2] B0 an

On the Raspberry Pi 3B+, Rust showed lower average latency, tighter timing behavior, and zero crashes under identical
real-time tasks compared to C++, which matched Rust in raw speed but displayed more jitter and occasional
segmentation faults. However, heavily optimized C++ builds (e.g., -03, -march=native, real-time threading libraries)
could narrow these gaps. Overall, Rust delivered more predictable and fault-tolerant behavior on constrained embedded
hardware, but further testing with optimized C++ configurations is needed for a definitive comparison.

In our experiments we compared the performance of Rust and C++ on a Raspberry Pi that controlled a pump through a
relay and read pressure data over |1°C. Each program measured the end-to-end latency from activating the pump to
receiving the first valid sensor reading, as well as the steady-state sampling rate of the pressure sensor. The results
showed that both languages achieved nearly identical average performance, and the small differences observed in the
P95 and p99 values are most likely due to hardware timing jitter, 1°C bus delays, and the Linux scheduler rather than the

languages themselves. Overall, Rust and C++ performed similarly in this real-time hardware setting.

Conclusion

Our experiments in virtualized environments demonstrated that Rust is fully capable of meeting real-time performance requirements while inherently eliminating many of the memory-related vulnerabilities commonly encountered in C++. Although Rust performed at
speeds equal to or slightly slower than C++ in certain benchmarks, it's safety guarantees and predictability offer a strong tradeoff in high-reliability applications. By extending our tests across multiple hardware platforms, refining our analytical methods, and completing
the driver and kernel-level integrations, the project is now positioned to deliver a comprehensive and compelling demonstration. The goal of this demonstration is to clearly showcase Rust's advanced capabillities, it's ability to manage memory safely without a garbage
collector, it’s strong concurrency model, and it's potential performance advantages in real-world scenarios. At the same time, we aim to present a balanced perspective: while C++ continues to benefit from it's extensive and mature library ecosystem, Rust’s tooling
and community-driven development are expanding at a rapid pace, reflecting the language’s growing adoption and long-term viability. Throughout this project, our team has gained significant experience in function design, modularization, and top-down system
development. These insights not only deepened our understanding of both languages but also strengthened our ability to evaluate technologies critically and design systems with safety, performance, and scalability in mind.




	Slide 1

