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The STT-MRAM device
successfully switched from
the parallel (P) to antiparallel
(AP) state when driven with
a —0.45 mA write current
applied over a 4 ns pulse.

* Al models require high memory bandwidth and power, keeping them
dependent on cloud computing.
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A conventional CPU cannot support these workloads locally, creating a A. STT-MRAM Switching Results

A Writing Current vs. Switching Time for STT-MRAM OOM M F

* Using OOMMF, the 28 nm STT-MRAM
model demonstrated a critical switching
current of 21uA, with the free layer
switching polarity at 19ns.

need for hardware that enables fully on-chip learning.

« MRAM is a promising non-volatile memory for this purpose, using a
Magnetic Tunnel Junction (MTJ) to store data through resistance
changes (Fig. 2).

 An MTJ consists of a pinned layer and a free layer, and their magnetic
alignment determines the stored bit (Fig.1) :
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« Behavior reflects the expected current-
dependent reduction in switching time
and confirms efficient operation at
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Magnetic Tunnel Junction * 1 ne parallel stores a “17, while
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Anti-Parallel the antiparallel state stores a “0” : relatively low write currents.
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HSPICE Conclusion

« HSPICE simulations verified that all three MRAM configurations (SOT, STT, and
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Figure 2. STT-MRAM Cell Structure Figure 3. SOT-MRAM Cell Structure SAS) perform stable and complete write switching, with the free-layer «  OOMMF provides detailed micromagnetic insight into MTJ
magnetization fully reversing and orthogonal components settling to zero. switching behavior and field dynamics and HSPICE validates
device operation by demonstrating reliable switching and
IVI eth Od S performance
C =~ Tt C. SOT-MRAM HSPICE '
OOMMEF (Object Oriented Micro-magnetic Framework) ﬂ j Re\j\l;!:rt]s 450 uA SHE oul  Combined, these results show that SAS-MRAM is a viable next
| « Witha M pulse _chi i i
. QOMMF, an open source-_modelmg tool from NIST, was used to B \/\f applied over 3.5ns, the step for future on-chip computing architectures.
simulate the micromagnetic behavior of the MTJ free layer. N\ SOT-MRAM device exhibits . Future work would involve integrating these architectures into a
* Used to model MTJ switching by numerically solving the Landau- fast, deterministic switching DNN memory alongside a volatile memory (SRAM) to have a fully
Lifshitz-Gilbert (LLG) equation with spin torque terms. _E and smooth settling of all functional Al model for operation in multiple systems.

magnetic components.
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Figure 4. LLG equation with spin torque terms used for MTJ Modeling - Y A A — * No OSC'”?t_'OnS or R f
—— - metastability appear in the ererences
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