

Mission Statement

To develop innovative solutions that address drug diversion, enhance security, and improve medication management accountability—ensuring safer practices, better patient outcomes, and streamlined healthcare processes.

Introduction/Background

- Medication reconciled weekly to find discrepancies from human error/drug diversion
- Manual count performed by two registered nurses
- Time-consuming
- Diverts attention from patient care
- Contributes to provider fatigue
- \circ Human error \rightarrow unnecessary investigations
- This project aims to tackle the limitations of current counting processes by implementing an automated, continuous solution.

Final Prototype Specifications

Rated Capacity	424 g
Weight Sensitivity	392 mg
Precision at 392 mg	32% Max, 3% Avg
Accuracy at 392 mg	97.34% ± 5.79%
Count Time	1.245 seconds
Power Voltage	3.3 V DC
Service Life	7 years
Operating Temperature	-40°C to 85°C
Storage Capacity	313 cm ³
Cost	\$20

Figure 1 (right): Wheatstone Circuit measures the electrical resistance between two nodes of a bridge circuit \rightarrow provide signal voltage

An automated, continuous counting inventory module for medication Ella Gleason¹ | Allyiah Gomez¹ | Kylie Hartana¹ | Nicholas Steele¹ | Isabella Valli-Doherty¹ Faculty Mentor: Asif Salekin, PhD¹ | Clinical Mentors: Melania Flores, D.N.P., M.S.N., R.N., N.E.-B.C.², Aman Verma, D.O.² ¹School of Biological and Health Systems Engineering, Arizona State University, ² Mayo Clinic

Final Technical Model

Technical model of how signal voltage of load cell translates to weight, which was verified with three different linear regression models, displayed on the right.

$G = (U_{sig}/U_{ref}) * (L_{R.C.}/L_{R.O})$

G = estimated weight (kg) U_{sia} = signal voltage of load cell

(mV)

 U_{ref} = reference voltage from the load cell (V)

 L_{PC} = rated capacity of load cell (maximum allowable weight) (kg)

 $L_{R,O}$ = rated output of the load cell (1 mV/V)

Prototype

Verification Results

Positional Analysis Positional Analysis: Bottom Left Bottom Right Center Figure 7 (right): Top Left Top Right Histograms depicting the distribution of normalized data points: (weight - median) standard deviation -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -7.5 Z-score Normalization

Figures 2, 3, 4, 5, 6 (left): Iterative design progression of a drug cabinet.

- (Fig. 2) Initial mount for load cell.
- (Fig. 3) Initial model with frontal cabinet for actuator.
- (Fig. 4) Iteration with different locking mechanism and connection to electrical components.
- (Fig. 5) Final iteration.
- (Fig. 6) Labeled sagittal view of final iteration.

<u>Regulatory Requirements:</u>

- management and compliance

Our team would like to thank Dr. Melania Flores, Dr. Aman Verma, and the facilitators of the Mayo Clinic Synapse Program for their invaluable guidance and shared experience. We extend gratitude to our technical mentor, Dr. Asif Salekin, for providing knowledge and assistance. We would also like to acknowledge our facilitators, Dr. Brent Vernon, Dr. Bradley Greger, and Prof. Sobrado, for their feedback and support throughout the process of our capstone design project.

Verification Results (Cont.)

Mean Square Error Analysis:

<u>Transactional Testing</u>:

	No.	Quantity Change	Calculated Quantity (Rounded)	Error		
	1	±18	44	4.04		
]*	+40	48	-0.10		
	2	-4	44	-0.12		
	3	-13 -19 +30	27	3.90		
	3*		31	-0.07		
	4		8	3.79		
	4*		12	0.01		
	5		38	3.95		
	5*		42	-0.13		
11.463%	6	+6	48	-0.15		
10% 15%	L	1	1			
re Error (MSE)						

Limitations

• Inconsistencies in sensor output due to prototype structure quality • Interference due to external forces (vibrations)

• Inability to test custom microcontroller circuit prior to PCB design Imprecise and inaccurate at detecting weights <200 mg

Design Status and Future Work

applications: automated pharmacy

systems, pharmacy-at-home, medication

{percent within 3std:.2f}% within
f'{percent within 3std:.2f}% withir

<u>Limitations</u>:

- Inconsistencies in sensor output due to prototype structure quality.
- Sensitivities to external forces.
- development.

Inability to test custom microcontroller circuit prior to PCV

Transaction	Quanity Change	Calculated Quantity (Rounded)	Error
1	+48	44	4.04
1*		48	-0.10
2	-4	44	-0.12
3	-13	27	3.90
3*		31	-0.07
4	-19	8	3.79
4*		12	0.01
5	+30	38	3.95
5*		42	-0.13
6	+6	48	-0.15
0	+0	40	-0.15

Positions

RCC_OSC32_IN RCC_OSC32_OUT MCO [High speed clock in] VCP_TX

Figure 2: Labeled Fusion model of closed and opened drug cabinet

Figure 3: Sagittal Fusion model of cabinet.

Figure 4: Physical prototype of cabinet

Figure 5: Microcontroller schematic and physical prototype

Figure 6: Medication management software GUI