

Background

- · Approximately 50% of adults diagnosed with type 1 or 2 diabetes suffers from some form of painful peripheral neuropathy [1].
- Shortwave diathermy is an energy-based nerve stimulation technique commonly used to treat chronic pain from peripheral neuropathy.
- · The tuning process of energy-based medical devices utilizes medical phantoms to represent the properties of the patient within the system [2].
- Research pertaining to the behavior of various materials has led to the development of medical phantoms suitable for tuning of medical devices [2].
- Despite this effort, few medical phantoms exist specifically for applications in the electromagnetic diathermy.

Mission Statement

Precision Phantoms remains dedicated to addressing the industry need for anatomical phantoms that emulate dielectric properties of human tissue at diathermy frequency through the development of a 3-layered anatomical phantom made from solid agar-based gels and elementary anatomical structure.

Product Specifications

Product Specifications			
Product Specification	Value	Unit	
Total Composite Impedance	9.8 + j101.5	Ohm	
Frequency	27.12	MHz	
Male Foot Dimensions	10.5	in	
Bone Tissue Volume	0.40	L	
Muscle Tissue Volume	0.51	L	
Skin Tissue Volume	0.58	L	
Agar Concentration	2	% w/v	
Bone Concentrations (sugar, salt)	1.04, 0.34	mol/L	
Muscle Concentrations (glycine, salt)	1.22, 0.12	mol/L	
Skin Concentration (agar)	2	% w/v	
Preservative (sodium benzoate at pH 4)	1.5	%w/v	
Figure 1 . Table of final product specifications			

I IGUIC I. TANIC OF ITTAL PLOUULE SPECIFICATIONS.

Final Technical Model

Arizona State University, Ira A. Fulton Schools of Engineering, School for Biological and Health Systems Engineering

varying concentrations of salt and glycine.

Anatomica: Engineering an anatomical model A medical phantom for tuning and calibration of energy-based therapies

Erin Kispert¹, Jasmine Anne Francia², Michael Caro³, Quince Mclaws⁴, Shibani Aich⁵ Faculty Mentor: Rosalind Sadleir, Ph.D. School of Biological and Health Systems Engineering, Arizona State University Regenesis Biomedical, Inc.

Figure 3. Final prototype on the diathermy applicator pad.

varying concentrations of salt and glycine.

Figure 11. Fitted curves of real impedance with varying concentrations of salt and glycine.

Figure 12. Fitted curves of imaginary impedance with varying concentrations of salt and glycine.

Salt concentration (mol/l)

Glycine concentration (mol/l

Figure 4. Second iteration of foot shaped negative molds.

Figure 13. Identified recipe for muscle on enlarged graph of fitted curve of real impedance.

[1] Pop-Busui, R., Ang, L., Boulton, A. J. M., Feldman, E. L., Marcus, R. L., Mizokami-Stout, K., Singleton, R., Ziegler, D. (2022, February). Diagnosis and Treatment of Painful Diabetic Peripheral Neuropathy. American Diabetes Association.

[2] Chauhan, M., & Sadleir, R. (2022). Phantom Construction and Equipment Configurations for Characterizing Electrical Properties Using MRI. Advances in experimental medicine and biology, 1380, 83–110. https://doi.org/10.1007/978-3-031-03873-0_4

[3] *X-Ray Phantom Foot, Transparent.* (n.d.). GT Simulators [Photograph]. https://www.gtsimulators.com/collections/x-ray-training-phantoms/products/x-ray-ph antom-foot-transparent-ez7230

Figure 14. Identified recipe for muscle on enlarged graph of fitted curve of imaginary impedance.

ed Recipes from Experimental Graphs		
	Identified Recipe	
	Salt: 0.34 mol/L	
	Sugar: 1.04 mol/L	
	Salt: 0.12 mol/L	
	Glycine: 1.22 mol/L	
	N/A	

Figures 8. Table of porcine benchmark impedances standardized by volume.

Future Work

Figure 15. Existing medical foot phantom [3].

Acknowledgements

Faculty Mentors:

- Sung-Min Sohn, Ph.D.
- Brent Vernon, Ph.D.
- Bradley Greger, Ph.D.

Other:

- · Chavalchart Herabut
- Edgar Borboa

References