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Specifications + Material Selections

❑ 6–9 million people in the U.S. 

experience scoliosis or spinal 

deformities due to growth plate 

disturbances [1]. 

❑ 38,000+ spinal fusion surgeries 

are performed annually to treat 

severe cases [1].

❑ 15–30% of pediatric bone 

injuries involve growth plate 

fractures [2].

Needs/Metrics Value

Young’s Modulus 50-250 MPa

Load Withstood 35 N

Elastic 

Compressible Range
1-2 mm

Max Diametric 

Change at 8N
< 50%

Cell Viability > 95%

Swelling Ratio
Match or Less 

than Control

Max Force 

Generation

Match Control 

(7-9N)

Shear + Torsional 

Stress

Less than 

Control

Manufacturing Cost
Less than 

Control

The BioSpring is a millimeter-scale force-modulating polymer 

spring designed to enhance structural elasticity in existing 

orthopedic platforms to build implants that grow with the patient.

Healthy Curvature Spinal Deformity

Fig 1. Curvature & Growth Plate 

Pinching in Spinal Deformities [3].
Fig 2. a) BioSpring two-rod approach, b) BioSpring 

implant device shown on the right.
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 Integrated Device Validation Testing

Final Design + Moving Forward

Fig 6: LSE Sample #2 after 96-hour 

growth period. Image contrast edited 

for increased cell visibility. Qualitative 

analysis shows cell proliferation across 

the stainless-steel control and 

all polymer samples. Subsequent reruns 

performed on LSE and PDMS samples 

over 24-hour period yielded similar 

results. Future experiments will 

involve Trypan blue staining with 

hemocytometers to quantify precise 

live/dead cell ratios.

❑ Next steps should include investigating 

LSE 2x3mm and 3x3mm with larger sample sizes.

❑We recommend looking into medical-grade 

manufacturing practices for implantable devices, 

testing LSE's medical-grade counterpart (medical 

rubber), and exploring other manufacturing process 

to decrease dimensional tolerance (injection 

molding).

❑ As a component for implantable orthopedic devices, 

the BioSpring would be classified as a Class III 

Biomedical Device and will adhere to the necessary 

regulations and requirements.

Fig 5: Swelling ratios of various 

polymer compositions tested for 

the BioSpring component. All 

materials except TPU with 50% 

infill showed a statistically 

significant reduction in swelling 

compared to the stainless-steel 

controls (which had varying 

geometries), indicating their 

suitability as low-swelling alter-

natives for implant integration.

❑ Current implants use rigid 

fixation, which is non-ideal 

for growing bone. Rigid 

systems can lead to:

➢ Stunted or uneven bone 

growth

➢ Delayed or impaired 

recovery

➢ Poor compatibility with 

soft tissue in joints

LSE

PDMS

TPU

0N               8N               35N

Diameter Increase (±1 SD) [scale bar = 4mm]

42.41% ± 3.48% 78.44% ± 4.36%

16.21% ± 1.93% 19.83% ± 1.57%

1.77% ± 2.39% 3.88% ± 2.85%

Fig 3. Material Selection Process via Ansys Granta 

EduPack. TPU 20% Barium Sulfate hit the desired 

yield strength metrics with 98% similarity. Soft 

polymers were selected due to similar mechanical 

properties with a larger range of compressibility.

Selected Polymers:

❑Thermoplastic Polyurethane 

(TPU)

❑Polydimethylsiloxane (PDMS)

❑Liquid Silicone Elastomer (LSE)

Fig 4: Characterization results. Testing 

revealed that PDMS and LSE springs exhibited 

force-extension behaviors that fell between 

those of the two stainless steel controls and 

comparable Young's moduli, demonstrating 

suitable stiffness for dynamic orthopedic 

loading, while improving on the controls by 

having a smooth, predictable force response 

across a longer range of compression, and less 

slippage. All materials showed diametric 

deformation within the limits of the screw 

hole, showing structural compatibility.
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1 Mechanical Compression Testing

2 Swelling Ratio Testing

3 Cell Viability Testing

4 Integrated Device Testing

Material Characterization – How do the materials 

behave under mechanical stress?

Implantable Feasibility – How do the materials react 

to the conditions of the body?

Device Validation –  Can the prototype produce an 

effective force in the final device?

❑4 Material Conditions

❑9 Dimensional 

Combinations

❑36 Total Unique 

Experimental Groups

 Mechanical Compression Testing1

 Cell Viability Testing3
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Fig 7: Validation testing. Distribution (n=20) of remaining three experimental groups against control (C) 

in target range (7-9N). Kruskal-Wallis analysis confirmed significance between groups, post-hoc tests 

using Holm’s method revealed statistical significance shown between Control and LSE 2x4 (*p=0.0039). 

C vs LSE 2x3, p = 0.6941 and C vs LSE 3x3, p = 0.3514. LSE 2x3 and 3x3 were not statistically different 

from each other or C, indicating successful fit of target range and need for further testing.
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