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An overabundance of cerebrospinal fluid (CSF) in the brain increases intracranial pressure 
(ICP), causing tissue compression, impaired blood flow, and axon damage in over 14 
million people worldwide [2].
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Current ICP measurement techniques, such as computed tomography (CT) and external 
ventricular drainage, cannot [2]:
• Actively track quick ICP changes
• Differentiate between focal and global ICP changes
• Consistently measure ICP with accuracy
• Adequately prevent CSF leaks

The Neural Microsystems Lab at Arizona State 
University has developed a remote impedance 
measurement system (RIMS) as a potential solution 
for ICP measurement, involving wireless power 
transfer between an external ultrasound emitter and 
an implanted millimeter-scale piezoelectric receiver. 
Aim 1: Develop and test RIMS for remote 
bioimpedance measurements and validate these 
measurements in a brain phantom with controlled 
conductivity.
Aim 2: Use RIMS in a brain phantom model and 
assess the relationship between ICP and cerebral 
bioimpedance.

Impedance measurement technique using remote 
impedance measurement system. [5]

Schematic of RIMS remote receiver [5]
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Photograph of RIMS remote receiver [5]
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• The results of this project demonstrate the feasibility of 
measuring cerebral bioimpedance using RIMS with 
remote powering by ultrasound.

• The results highlight the significance of electrode 
placement relative to the remote receiver.

• Future work involves testing in a brain phantom model 
to establish a relationship between ICP and cerebral 
bioimpedance.
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Top: Frequency sweep data comparing the optimal baseband frequency for each test. 

Middle: Position change data comparing the effects of electrode depth placement on voltage readout.

Bottom: Position change data comparing the effects of vertical electrode placement on voltage readout.

• Recorded voltage decreases rapidly with distance 
from receiver – from approx. 11% at 1 mm to 50% by 
5 mm and 73% at 10 mm 

• Recorded voltage readout achieves steady-state 
beyond 20 mm from the receiver

• Recorded voltage also decreases with increase in 
conductivity of electrolyte. 
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