Characterization of Novel PDMS-Based Drug Encapsulation Strategies for Controlled Release Applications Using Choline-Geranic Acid Ionic Liquid

Introduction

Polydimethylsiloxane (PDMS) is an elastomer commonly used in biomedical implants due to its favorable mechanical properties and biocompatibility.

Ocular implants

Coronary implants

Contraceptive devices

Orthopaedic Prosthesis

Breast implants

Transdermal patches

- Combining PDMS with a drug delivery platform enhances its biomedical utility by providing both structural function and therapeutic benefit
- We developed a novel formulation combining PDMS with ionic liquids that enables high loading of the model drug Rhodamine B and supports sustained, high-level release over time.

Ionic Liquids

¹H NMR Spectrum of Ionic liquid

¹H-NMR spectroscopy of CAGE Ionic liquids made up of four different molar ratios of cation, Choline, and anion, Geranic Acid, molecules.

Methods

curing agent at a 10:1 ratio.

Drug delivery as films

Drug delivery as implants

Ionic liquids (ILs) are salts in a liquid state, typically composed of organic cations and either organic or inorganic anions.

Key Characteristics: Amphiphilic Nature 2. Enhanced Permeability 3. High Solubility 4. Overall Tunability

REFERENCES

[1] Marmo, A.C., Grunlan, M.A., Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett. https://doi.org/10.1021/acsmacrolett.2c00701. (2023) [2] Miranda et al. Properties and Applications of PDMS for Biomedical Engineering: A Review. Journal of Controlled Release https://pmc.ncbi.nlm.nih.gov/articles/PMC8788510/ (2021) [3] Padmanabhan et al. Allometrically Scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cell. Nat. Biomed. Eng. https://www.nature.com/articles/s41551-023-01091-5 (2023)

Aasim Khan¹, Rachel Reyes De Los Santos², Mallikarjun Gosangi^{3,4}, Kaushal Rege^{3,4,5}

¹Biomedical Engineering Graduate Program, School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA ² Biochemistry Undergraduate Program, School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA ³Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, Arizona, USA ⁴Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA ⁵Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA

PDMS films were prepared by mixing Sylgard 184 base with

DCM

Results

Loading Quantities

Average weight and RhB Loading into films				
Thin film (1 mm x 10 mm)	Wt of the film (mg)	RhB loaded (µg)	RhB (µg/mg)	
PDMS+DCM+RhB	98.6	90.4	0.9	
PDMS+H2O+RhB	81.6	69.6	0.9	
PDMS+IL-2+RhB	89.1	225.3	2.5	

Average weight and RhB Loading into Implants				
Thick film (7 mm x 10 mm)	Wt of the film (mg)	RhB loaded (µg)	RhB (µg/mg)	
PDMS+DCM+RhB	538.4	335.6	0.6	
PDMS+H2O+RhB	550.4	335.7	0.6	
PDMS+IL-2+RhB	615.8	1093.0	1.8	

Mechanical Testing Young Modulus

- CAGE incorporation significantly reduced stiffness (~0.3–0.5 MPa), compared to 1:5 PDMS (~2.4 MPa).
- Lower modulus supports flexibility for coating applications.

Acknowledgements I sincerely thank Dr. Kaushal Rege, principal investigator of the Center for Biomaterials Innovation and Translation at Arizona State University, for his guidance and support throughout this project. I am especially grateful to Mallikarjun Gosangi for his mentorship, technical insights, and constant encouragement during every stage of this research. I also appreciate the resources and collaborative environment provided by the CBIT Lab, which were essential to the successful completion of this work.

PDMS+H₂O+RhB EHT = 5.00 kV Signal A = InLens Date :14 Apr 2025 WD = 12.1 mm Mag = 100 X Time :12:26:32
 EHT = 5.00 kV
 Signal A = InLens
 Date :14 Apr 2025

 WD = 12.1 mm
 Mag = 100 X
 Time :12:30:50

Film Type	Release Constant (<i>k</i>)	Release Exponent (<i>n</i>)
DCM	0.07230	0.36730
H2O	0.08070	0.47322
CAGE (1:1)	0.33747	0.36234
CAGE (1:2)	0.37259	0.29446
CAGE (1:3)	0.40952	0.28033
CAGE (1:4)	0.43352	0.26854
Film Type	Release	Release
	Constant (k)	Exponent (<i>n</i>)
DCM	0.01769	0.51708
H2O	0.01708	0.58465
CAGE (1:2)	0.19946	0.40080

Korsmeyer–Peppas Model

mine	1250-
Rhodi	1000-
ase of	750-
e Rele	500-
nulativ	250
Cun	0

Tensile Strength

CAGE films had reduced tensile strength (< 2 MPa) relative to 1:5 PDMS (> 4 MPa).

 Mechanical properties remain suitable for non-load-bearing uses.

Conclusions / Future Directions

- reconstructions.

RhB Release from devices

Release from Film

ទី 180ៗ

- CAGE films released up to \sim 150 µg RhB, $\sim 3 \times$ more than DCM or water.
- IL-1 to IL-3 reached >90% release; DCM and water stayed below 50%.
- k increased with CAGE ratio (up to 0.43), showing enhanced release rates.
- *n* decreased with CAGE ratio (down to 0.27), indicating Fickian diffusion.
- CAGE films released up to \sim 1500 µg RhB; DCM and water stayed $<350 \mu g$.
- IL-2 released ~75% of loaded RhB; others remained <25%.
- *k* for IL-2 was 0.20 nearly $10 \times$ higher than DCM or water films.
- *n* for IL-2 was 0.40, suggesting predominantly Fickian transport.

CAGE-enhanced PDMS films enabled tunable drug loading and sustained release, offering a promising platform for localized delivery in implant coatings and

• Future directions include applying this strategy toward mitigating foreign body response (FBR) using small molecule therapeutics in long-term implants.

School of **Biological** and

Health Systems Engineering