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Three models shown:
● Base (0 TID, no radiation)
● 4k TID
● 10k TID
The simulation shows that the 
10k model demonstrates clear 
improvements when used in a 
chip with higher radiation 
exposure, but poorer 
performance in a brand-new 
chip when compared to the 
base model.
The effect is less noticeable for 
smaller doses.

As artificial intelligence becomes increasingly common in commercial and industrial 
applications, the demand for energy-efficient and high-performance hardware has 
surged. This need for better hardware is due to the highly computational nature of 
AI algorithms, oftentimes needing to perform billions, trillions, or more operations 
per second. ASU’s Sol Supercomputer, the one used to train the models in this 
project, can process up to 2.272 petaflops per second! [1] The current 
state-of-the-art in computational hardware uses digital circuits, which suffer from 
(relatively) high power consumption and (relatively) slow computation time
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● The amount of charge in the cell directly represents a stored value in 
memory, and any small changes to this charge will be read as a different 
stored value. If this value changes, any multiplication done using that 
memory data will be inaccurate. 

● SONOS cells are vulnerable to radiation, as electrons can be ejected and 
more will be lost over time. 

● In space, radiation exposure on the scale of 0.1 mrad/s to 10 mrad/s [3]
● This charge loss, which we call “Conductance Drift”, leads to inaccurate 

computations, directly decreasing the performance of machine learning 
models, such as image recognition.

● Increased TID induces dot 
product errors

● Applying alpha greatly 
reduces the effect of drift

No Alpha Alpha

● ResNet-32 model image recognition accuracy
● Applying alpha to the model results in a 

marked increase in accuracy at higher TID 
levels

● Setup
○ The chip is placed in one of 

the sockets
○ The controller board 

connects PC and the 
chip/board

● Capabilities
○ Program the chip and read 

back the data
○ Calculate MVM
○ Read column currents

● Injects noise into neural network during training
● Optimizes the model at a specific TID
● Tradeoff: Less accuracy at other TIDs

● Addressing these issues is 
essential for deploying memristive 
technology in critical, 
power-sensitive applications like 
autonomous vehicles, aerospace 
systems, and other advanced 
AI-driven platforms.

Figure 3: Alpha Correction Factor Computation [4]

Figure 4: Dot Product Errors

Figure 5: ResNet-32 Image Accuracy

● SONOS chips are highly efficient at performing machine 
learning, but radiation can cause conductance drift and 
reduce accuracy

● Methods such as Alpha Correction Factor and Training 
with Noise can help correct for that and greatly improve 
accuracy

Figure 1: SONOS Cell Illustration [2]

Figure 8: Memristive chip in PCB

Figure 6: Model Training Loop

Figure 2: Radiation effects on charge cell 
(oversimplified)

Memristive chips offer a 
promising solution by performing 
computations directly in memory, 
drastically reducing power usage 
and execution time. These chips 
use trapped electrons in SONOS 
cells to store values, which can 
then be “multiplied” with an 
applied voltage. 
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● Multiply the output of the MVM by 1/α 
● Denominator: Multiply a test V_cal matrix by 

the sum of the conductances 
● Numerator: Sum the currents from multiplying 

V_cal by the irradiated SONOS chip

Figure 7: Different models accuracy at varying TID


