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Motivation
* Accurate Nanoscale Modeling: Quantum effects are
essential for understanding modern MOSFETSs, requiring
advanced modeling.
* Accessible Research Tool: A GUI-based simulator with
NanoHub deployment makes quantum device analysis
easier for students and researchers.

Mathematical Model

POISSON EQUATION
= Governs the electrostatic potential ¢(x) due to charge distribution p(x).
* Expressed as: f{j} _ P

dr? r

= Necessary for modeling charge behavior in MOS capacitors and quantum wells.
Solution Procedure

a. Linearization and Discretization
« Converts the continuous Poisson equation into a matrix-based formulation.
= Uses Finite Difference Method (FDM):

2. Uses forward and backward substitution to compute ¢(x).
* Provides a fast and stable method for solving large-scale simulations.

SCHRODINGER EQUATION

Shooting Method for the Schrodinger Equation ‘
h? d*y

Solution Methodology Sl R
2m* dz?

1. Guess an initial energy (E).

Numerical Implementation in MATLAB

Finding the Eigenvalues

‘ ‘/'(J_')L",' — Eu

3. Adjust E iteratively to satisfy boundary conditions ({ = 0 at well edges).

* Uses a grid-based approach for defining potential well structures.
* Implements finite difference approximation to convert Schrodinger’s equation into a matrix problem.

» Solves for wavefunctions (x) and energy levels E using numerical solvers.

* Eigenvalues correspond to quantized energy states in the confined quantum well.

* Achieved by iterating over energy values and minimizing the residual error at the boundaries.

* The correct eigenvalue ensures a smooth wavefunction matching boundary conditions.
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Project Outcomes
* Developed a self-consistent 1D Schrodinger-Poisson solver to model
guantum effects in nanoscale silicon devices.
* Implemented a user-friendly GUI allowing users to configure device
parameters and view results interactively.
* Initiated NanoHub integration enabling broader access and future use
In research and education.
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Conduction and Valence bands vs Position
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* Discretizes the spatial domain into a grid. Pisy — 20; + P51 fi7

+ Approximates second derivatives as: Ar? € et y_eiere

« Leads to a system of linear equations in matrix form. vakey 1. | BWB valoy 1
b. Numerical Solution — LU Decomposition - e

+ The discretized Poisson equation results in a sparse linear system, solved efficiently using LU decomposition. Wiy % | o3¢ v

» Steps:

1. Factorizes the coefficient matrix A into L {lower triangular) and U (upper triangular) matrices. + Tool Viersion
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Arizona State University 1D Self-Consistent Schrodinger-Poisson Solver for Modeling of Silicon-Based Nanoscale Transistors Tool
Team: Dr. Dragica Vasileska (Mentor), Bhargav Nallan Chakravartula (Asst. Mentor), 1zak Baranowski (Asst. Mentor), Karam Aboona, Adam Cisneros, Laura Razooq,
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Field Profile vs Position «1018 Electron Density vs. Position

Uniqueness & Applications

* Models’ quantum effects with Schrodinger-Poisson

solver.

* Easy-to-use GUI for interactive simulation.
* Useful for MOS, MOSFET, and SOI analysis in research

and education.

Device configuration specification page of the GUIl and simulation Results
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(a) Energy band diagram. (b) Variation of electric field with distance. (c) Electron density variation vs. distance.
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