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EXPERIMENTAL IMPLEMENTATION

* Infrared 780 nm laser for the generation of entangled photons

density matrix construct a maximally entangled

Requirements: state by applying projectors on the

1. Unit trace: For density density matrix.
matrix p, Tr(p)=1 Our conclusion was to use No
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much flux (number of photons)
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Using Cauchy-Schwarz Inequality, we
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This project aims to: We use projectors: o d D simulations allowed for reduced
: 1 F =0.9738 measurements compared to a full

1. develop a numerical scheme for X Xea) = —(la) + [6))([c) + |d)) _\ P

measurement scheme
* No filter maintained the most entanglement
compared to flux loss in nonlocal filtering  §
* Bayesian inference method allowed for a full
characterization of quantum states in an
efficient time

recovering photon entanglement e _
between frequency bins due to losses in [ XapYed) = 1 (la) +[6))(|c) +i|d))

certain bins for high dimensional photons Using Bayesian inference, we construct
2. develop a statistical robust scheme for states with a fidelity of about 0.97, which is
reduces the number of measurements acceptable for the described relevant
needed. applications.
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