

Bone Breaker's purpose is to aim to lessen the risks of treatments leading to deformities and improve diagnosis of bone fractures at the growth plate. We intend to dedicate our skills and strengths to create a combination device that advances patient care.

Background

Skeletal injuries are common in children, with musculoskeletal injuries accounting for approximately 11.8 million healthcare visits annually in the pediatric population. While most fractures in children heal without complications, growth arrest following physeal fractures (~20% of all fractures) remains a significant challenge in pediatric orthopedics. This type of growth disturbance can lead to considerable deformities and often necessitates further invasive surgical intervention. Researchers currently have no method of producing consistent, reproducible growth plate fractures to study.

Durable	Ease of use	Comf
Waterproof	Structural integrity	Legal compl
Long-lasting	Reliable	Perfor
Accurate	Affordable (reasonable cost)	Repla
Pediatric compatible	Covered or reimbursable by insurance company	Non-t

Customer Needs

Project Planning

Gantt Chart & House of Quality Osteodynamics would like to

thank our mentors Dr. Jessica Weaver and Dr. Matthew Halanski at PCH for their support and guidence throughout our design process.

Bone Breaker: Revoluntionizing Orthopedic Research

Vibha Kannan¹, Ava Marushak¹, Anusha Patibandla¹, Ssinzi Maria Nabatanzi¹, Tatum McMillan¹

Dr. Jessica Weaver, PhD, Dr. Matthew A. Halanski, MD

School of Biological and Health System Engineering, Arizona State University, Phoenix Children's Hospital

Mission Statement

Device Design

Figure 2. Stress-Strain Distribution with Varying Loading Weights Across Age Groups

> Figure 3. Adjustable Compression Clamp with Controlled Force Application Initial Design

Product Architecture

Figure 1. 3D 18 Porcine Model Femur

ort
liances
mance
ceable parts
oxic

Acknowledgements

Overall costs would be ~\$500

5 Stainless steel 316L for clamp frame and force app

1 3.7V Samsung Lithium-Battery (NR18650-30Q) and circuit wiring

1 Low power ESP32 microcontroller

1 Resistance Temperature Detector (RTD)

Final Product Specifications

Compression Force Accur

Bone Displacement Contr

Battery Life

Shear Stress Control

Adjustability Features

Manufacturing

the plication	2 Piezoelectric force sensor
-Ion and	3D printing Filament
	Housing components
2	1 TFT LCD Medical-grade display

	Target Value
racy	50 N
rol	0.5mm
	3 hours
	53 MPa
	6.2 - 18 cm

Design Status & Future Work