

To develop innovative solutions that address drug divergence, enhance security, and improve medication management accountability-ensuring safer practices, better patient outcomes, and streamlined healthcare processes.

Introduction/Background

- Medication reconciled weekly to find discrepancies from human error/drug diversion
- Manual count performed by two RNs
- Time-consuming
- Diverts attention from patient care
- Contributes to provider fatigue
- \circ Human error \rightarrow unnecessary investigations

• This project aims to tackle the limitations of current counting processes by implementing an automated, continuous solution.

Design Inputs

Customer Need	Metric		
Performance			
Comprehensive drug identification	Inventory of total identifiable drugs		
Speed	Time it takes for the device to count		
Ease of Use			
Ease to restock, remove, and count	Pharmacist & nurse feedback		
Ease of implementation	Manufacturing/scaling feedback		
Cost			
Affordable cost	Cost to produce		
Reduce financial burden from medication loss	Financial setbacks towards drug diversion		
Safety			
Patient safety	Patient & nurse feedback		
Reliable			
Accurate and precise count	Monitoring system/pharmacist feedback		
Service life	Registered nurse feedback		

An automated, continuous counting inventory module for medication

Ella Gleason¹ | Allyiah Gomez¹ | Kylie Hartana¹ | Nicholas Steele¹ | Isabella Valli-Doherty¹

Faculty Mentor: Dr. Asif Salekin, PhD¹ | Clinical Mentors: Dr. Melania Flores, D.N.P., M.S.N., R.N., N.E.-B.C.², Dr. Aman Verma, D.O.² ¹School of Biological and Health Systems Engineering, Arizona State University, ² Mayo Clinic

Mission Statement

electrical resistance between two nodes of a bridge circuit \rightarrow provide signal voltage

Our team would like to thank Dr. Melania Flores, Dr. Aman Verma, and the facilitators of the Mayo Clinic Synapse Program for their invaluable guidance and shared experience. We extend gratitude to our technical mentor, Dr. Asif Salekin, for providing knowledge and assistance. We would also like to acknowledge our facilitators, Dr. Brent Vernon, Dr. Bradley Greger, and Prof. Sobrado, for their feedback and support throughout the process of our capstone design project.

Product Architecture (cont.)

 $mL\pi r^{2} + \pi^{2}r^{3}hpc(T)$

p = resistivity (ohm * meter) rho = density (kg/m 3) c = specific heat capacity (J / kg * K) T = temperature (K)t = time(s)

Diagram:

Design for Manufacturing

Material	Purpose	Approximate Cost
ar polycarbonate plastic		\$5.94 per square foot
PLA filament		
	Measure force through voltage → mass	\$298
Nitinol	Lock and unlock cabinet	\$37.95
	Convert analog to digital	\$9.95
	Regulate current applied to actuators	\$10.32

Final Product Specifications

ecifications	Target Value	
nse Time	10 seconds	
ce Life	7 years	
Voltage	24 V DC	
tion Cost	\$15 - \$20	
nt time	18 seconds	
<i>N</i> echanism	2 seconds	
emperature	10 C below SMA	
Capacity	173 cm ³	
orm Factors	Minimum 3 options	
terface	Contrast ratio 4.5:1	

Design Status and Future Work

Create Prototype Feedback Create User Feedback Prototype
--

Acknowledgements