Ira A. Fulton Schools of Engineering **Arizona State University**

Background

1 in 8 women in the United States have a chance of developing breast cancer [1]. Acquiring imaging is the first step in a patients journey and 9.7% of women undergoing breast MRI encounter false positives due to artifacts / misinterpretations which can be attributed to low Signal-to-Noise Ratio (SNR). Additionally, 64% of women experience pain or discomfort during scans [2].

Figure 2: Clinically palpable breast cancer [4] (a) does not show any mass (b) T2 weighted image shows palpable mass, but has irregular margins (c) CT scan shows mass clearly

Our mission is to provide quality imaging and comfort for every patient.

Product Specifications

Customer Needs	Specifications	<u>Metrics</u>
Patient Comfort	Reduce pain/discomfort during scan	Switch to from pron supine positioning
Image Quality	Superior SNR	≥1 fold SNR gain
Coil Flexibility	Flexible to conform to patients body	Elasticity, Young's Modulus
Calibration/Tuning	Auto decoupling to ensure coils resonate at desired frequency	↓ signal loss, ↑ SNR, 127.7 MHz for 3.0 T scanner
Safety	Thermal Management	SAR: ≤1C° increase temperature
Durability	Lifespan of product	Tensile Strength
Ease of Positioning	Easy for technician to adjust on patient	Yes

Flexible RF Surface Coils for Enhanced Breast Imaging

Melanie Florez¹, Sydney Hankel¹, Alina Jelinski¹, Aleesha Rhodes¹ Dr. SungMin Sohn, PhD¹ School of Biological and Health Systems Engineering, Arizona State University

Product Concept and Design

Our device aims to improve upon the existing BraCoil prototype by focusing on enhanced patient comfort through the use of lighter, stretchable materials. In addition, we will utilize copper wire for improved adaptability, flexibility and imaging performance.

Virtual Prototyping / Models

Manufacturing

The flexible copper coil loops with be 5 cm in diameter and embedded within 3 layers: a padding layer for comfort, semi-rigid silicone for coil stability and a flexible, durable fabric for patient adaptability.

Figure 5: Example Magnetic field simulation

<u>Figure 7:</u> Inverse square law showing distance effect on relative signal

Technical Models & Product

Resonant Frequency:

Quality Factor:

Where Q = (Maximum Energy Stored)/(Average Energy) Dissipated per Cycle)

Stress-Strain Relationship:

Inverse Square Law:

Our team is currently working on developing a single coil loop with flexible copper wire to compare its imaging performance against rigid single coil loop. Simultaneously we are running simulations to analyze differences in imaging quality and how to optimize signal-to-noise ratio. Future steps include a 4 channel system testing with ASU's 9.4 T MRI scanner for SNR.

Acknowledgments

Special thanks to our faculty mentor Dr. SuhnMin Sohn, the Arizona State University's Biomedical Engineering Department, Capstone advisors, and industry mentors for their support and guidance in developing a more comfortable imaging experience for breast cancer diagnostics.

Project TImeline-Gantt Chart

 $\sigma = E\varepsilon$

Design Status / Future Steps

House of Quality

Business Model

References

