

Pressurized Wound Irrigation for Effective Wound Cleaning in Emergency Rooms

Anas Raslan, Anthony Reyes-Gonzalez, Eduardo Puebla Rodriguez, Mia Nguyen, Abdalrazag Mohamed-Ali Mentors: Dr. Scott Beeman, Dr. Jacob Gerstman School of Biological and Health Systems Engineering, Arizona State University, Abrazo Health

Our mission is to create an accessible, effective pressurized wound irrigation system that enhances healing, reduces infections, and improves care for all.

Clinical Needs

Background: Wound care is a important procedure in the E.R as infections can lead to further complications. Around 40 million emergency department visits per year in the US are related to traumatic injuries, including open wounds from falls, car accidents, violence, and surgical procedures.


- **Current solutions**:
- Plastic Bottles
- Syringes

Fig 1. Traditional methods of wound irrigation

Market Analysis

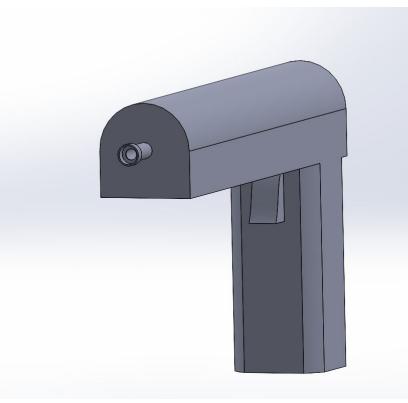
- Global Market Size: \$285.67 million USD in 2022
- Projected growth: \$347-411 million USD by 2030
- CAGR: 2.6-3.9% increase between 2023-2030

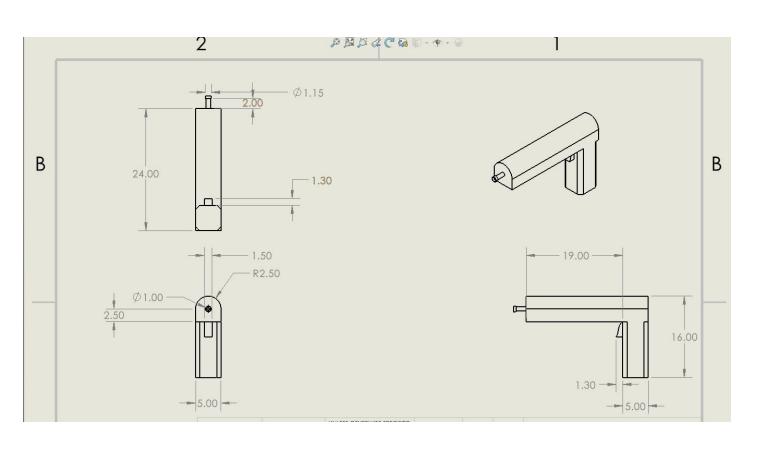
Fig 2. US irrigation market size graph

Target Specifications

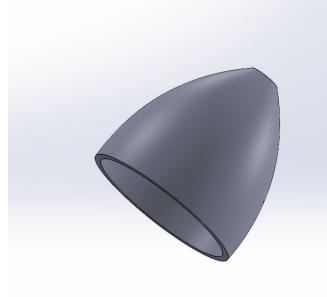
Customer Needs	Specifications
Infection Prevention	Infection Rate less than 19
Consistent Pressure	5-15psi, adjustable
Sterility	Should follow Health stan
Easy to use	Should take less than 5 mi
Affordable	Less than 40 USD

Table 1. Top customer needs with corresponding functional specifications.

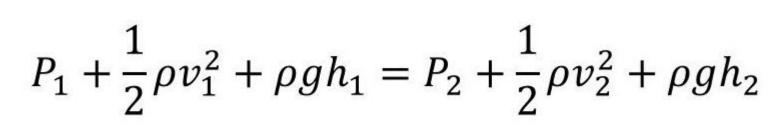

n 1%


standards

5 mins to use


Dominant Device Concept and Design

Device concept and design: Compact, portable, handheld size device that provides adjustable and constant pressure and volume, enhancing patient comfort and reducing the risk of infection. With splash guard, it promotes safety for both patients and healthcare providers. It aims to reduce the procedure down to two to five minutes.



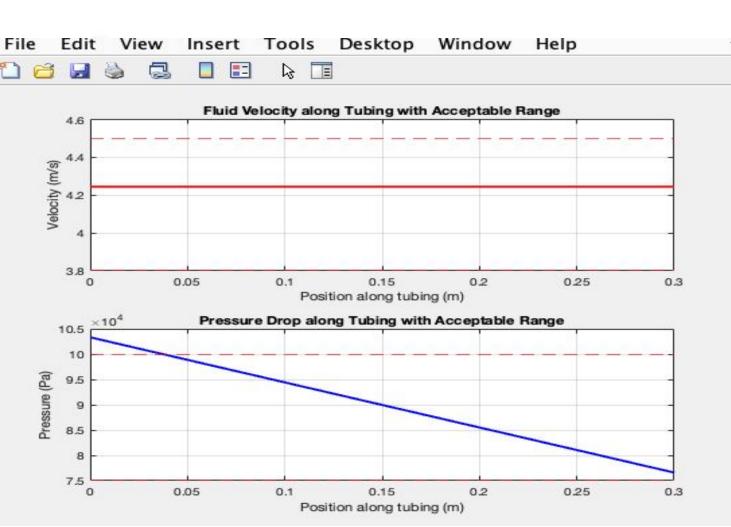

Fig 3. Product Architecture showing main frame of our device.

Fig 4. Product Architecture showing splash guard of our device.

Mathematical Modeling

Fig 5. The top graph is the velocity of the fluid as it goes through the system. The bottom graph is the pressure drop through the system. Both of these must be consistent and at acceptable levels.

Design for Manufacturing

Pressure Mechanism

Sterilized disposable N

Reservoir

Battery and Charger

Housing/Frame

Total Cost

Table 2. Breakdown of cost for every device unit assuming bulk production.

Project Timeline

TImeline	
September	Team form
October	Idea genera
November	Technical m
December	Symposium

Table 3. Concise project timeline

Future Directions

Future directions include prototyping and submitting FDA. Device prototyping is planned to execute in Spring 2025. Our device is classified as FDA class II: Moderate risk, thus, it will follow 510(k) premarket notification to demonstrate substantial equivalence to a predicate device.

Acknowledgments

We would like to thank the Ira A. Fulton Schools of Engineering, the Capstone Teaching team for the experiential learning that progressed throughout the Fall 2024 semester. We are especially grateful to the mentorship of Dr. Beeman and Dr. Gerstman, and their guidance.

Part	Cost
	\$25
Nozzle/Tip	\$3
	\$2
	\$5
	\$5
	\$40

Project

nation, Project selection, Benchmarking

ration, IP, Prior Art search

models, Product Architecture